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ABSTRACT: The primary objective of this investigation was to develop a QSAR model to
estimate the no effect level (NOEL) of chemicals in humans using data derived from
pharmaceutical clinical trials and the MCASE software program. We believe that a NOEL
model derived from human data provides a more specific estimate of the toxic dose
threshold of chemicals in humans compared to current risk assessment models which
extrapolate from animals to humans employing multiple uncertainty safety factors. A
database of the maximum recommended therapeutic dose (MRTD) of marketed
pharmaceuticals was compiled. Chemicals with low MRTDs were classified as high-toxicity compounds; chemicals with
high MRTDs were classified as low-toxicity compounds. Two separate training data sets were constructed to identify
specific structural alerts associated with high and low toxicity chemicals. A total of 134 decision alerts correlated with
toxicity in humans were identified from 1309 training data set chemicals. An internal validation experiment showed that
predictions for high- and low-toxicity chemicals were good (positive predictivity >92%) and differences between
experimental and predicted MRTDs were small (0.27–0.70 log-fold). Furthermore, the model exhibited good coverage
(89.9–93.6%) for three classes of chemicals (pharmaceuticals, direct food additives, and food contact substances). An
additional investigation demonstrated that the maximum tolerated dose (MTD) of chemicals in rodents was poorly
correlated with MRTD values in humans (R2 = 0.2005, n = 326). Finally, this report discusses experimental factors which
influence the accuracy of test chemical predictions, potential applications of the model, and the advantages of this model
over those that rely only on results of animal toxicology studies.

1This report is not an official U.S. Food and Drug Administration guidance or policy statement. No official support or
endorsement by the U.S. Food and Drug Administration is intended or should be inferred.
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INTRODUCTION

FDA's Center for Drug Evaluation and Research (CDER),
Office of Pharmaceutical Science (OPS), Informatics and
Computational Safety Analysis Staff (ICSAS) provides a
Computational Toxicology Consultancy Service for the
Agency. This service develops, validates, and uses
computational toxicology software to provide decision
support information for Agency regulatory and research
decisions. The Service has invested considerable time and
effort in the development of new software programs to meet
the needs of the Agency because until recently commercial
programs have been either unavailable or have provided
unreliable estimates of the toxicities of FDA regulated
pharmaceuticals [1]. Our non-clinical research is targeting
the development of software to predict toxicology endpoints
necessary for product marketing and the dose range at which
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chemicals elicit their toxic effects [1–3]. It is our mission to
develop a complete battery of software which corresponds to
all of the major toxicology studies recommended by the
Agency's Centers. Our clinical research effort is focused on
the development of software to predict the potential organ
and organ system adverse effects of chemicals in adult
humans. These software use data obtained from
pharmaceutical clinical trials and post-market surveillance of
the adverse effects of pharmaceuticals that were reported in
FDA/CDER’s Spontaneous Reporting System (SRS) and
Adverse Event Reporting System (AERS) databases [4].

The major objective of this investigation was to develop
a new quantitative structure activity relationship (QSAR)
expert system to estimate the MRTDs and NOELs of organic
chemicals in humans. We believed that MRTD and NOEL
estimates derived from human data would provide a more
relevant, accurate, sensitive, and specific estimate of the
toxic dose level of chemicals in humans compared to current
risk assessment models which rely upon the extrapolation of
data from animal toxicology tests. We have previously
demonstrated that MCASE can be used to predict the
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potential carcinogenicity of chemicals in male and female
rats and mice [1]. We hypothesized that a comparable
module set could be constructed to characterize structural
alerts for the MRTDs and NOELs of chemicals in humans
using a continuous dose concentration data set.

We used MRTD data for pharmaceuticals as a means of
estimating MRTD and NOEL doses of chemicals in humans
in our model. The MRTD is empirically derived from human
clinical trials, thus it is a direct measure of the threshold for
dose-related adverse effects of chemicals in humans. Clinical
trials for pharmaceuticals are performed to evaluate safety
and efficacy of drugs and to identify specific dose levels that
elicit beneficial and adverse pharmacologic effects. The
MRTD of a pharmaceutical is an estimated upper dose limit
beyond which a drug’s efficacy is not increased and/or
undesirable adverse effects begin to outweigh beneficial
effects.

A pharmaceutical's MRTD and NOEL in humans are
directly related to one another. Based upon our analyses of
the therapeutic dose ranges for pharmacologic effects of
drugs in our database, the overwhelming majority of drugs
demonstrate efficacy over a small range of treatment doses.
An analysis of the MRTD database revealed that most drugs
do not demonstrate efficacy or adverse effects at a dose
approximately 1/10 the MRTD (data not presented). Based
upon this observation, NOEL is defined as MRTD/10 in this
study. For a few noteworthy pharmaceutical categories (e.g.
some chemotherapeutics and immunosuppressants), the
clinically effective dose may be a dose that is accompanied
by substantial adverse effects. In such cases, the true NOEL
value may be less than 1/10 the MRTD. On the other hand,
for chemicals that are not pharmaceuticals there is no MRTD
and the NOEL can be considered a dose above which any
compound related effect is likely to be considered an adverse
effect and a manifestation of toxicity.

The clinical MRTD is in some ways analogous to the
maximum tolerated dose (MTD) used in rodent
carcinogenicity studies. The maximum tolerated dose in
rodents is a dose beyond which toxicity may result in an
unacceptable effect on survival in a two year carcinogenicity
study. The MRTD of a pharmaceutical is an estimated upper
dose limit beyond which a drug’s efficacy is not increased
and/or undesirable adverse effects begin to outweigh
beneficial effects. Both experimental values are derived from
studies that employ long treatment periods (generally 3–12
months in humans, 18–24 months in rodents), multiple
treatment doses, and the use of a placebo (negative) control
group. Clinical trials can identify adverse effects of
pharmaceuticals in humans that are poorly assessed in
animal toxicology studies (e.g. cognitive and mood altering
effects, etc.). Thus, the MRTD can be a more effective
measure of the threshold for adverse effects of chemicals in
humans.

MATERIALS AND METHODS

Software and Hardware

The software program used in this investigation is a two-
component system that includes a utility operating system
(MCASE version 3.55, obtained from MultiCASE, Inc.) and

individual modules for specific toxicology endpoints. The
toxicology modules were developed at FDA under a
Cooperative Research and Development Agreement
(CRADA) between FDA and MultiCASE, Inc. The MCASE
program was run on a Compaq (formerly DEC) Alpha
workstation (500 MHz) that included a DECram and an
OpenVMS operating system. The program reduced the
simplified molecular input line entry system (SMILES)
codes of organic chemicals to all possible 2–10 consecutive
atom molecular fragments. Fragments of active and inactive
molecules were then compared, and through molecular
subtraction those fragments (structural alerts) that were only
associated with active (positive) molecules were identified.
The program then identified QSAR attributes and/or
molecular fragments that were modulators of activity.
Modulators are molecular structure parameters that correlate
with enhanced or diminished activity of chemicals that share
a common structural alert, e.g. activating fragments,
inactivating fragments, log P, graph index. The combination
of these data was used to develop a quantitative estimate of
the potential toxicity of test chemicals. The results of QSAR
prediction experiments were saved in a summary data file, a
comprehensive data file, and a statistical analysis file in
ASCII format.

The MRTD Database

This investigation began with a list of 2114
pharmaceuticals included in FDA/CDER’s toxicology and
SRS databases [4]. The compounds included both older and
newly marketed pharmaceuticals, pharmaceutical aids,
diagnostic agents, and a few non-regulated substances with
pharmacologic properties. We identified the MRTD values
for 1653 of these compounds using Martindale: The Extra
Pharmacopoeia (1973, 1983, and 1993) and The Physicians’
Desk Reference (1995 and 1999) [5, 6]. 344 compounds
were ineligible for analysis due to chemical class restrictions
(see Chemical Class below), but the remaining 1309 were
suitable and their MRTD values used to construct databases
and MCASE modules. The MRTD values in this set formed a
continuous, 8-log distribution (0.00001–1000 mg/kg-
bw/day) and there was no clear separation of compounds
with high and low MRTD values (Figure 1, A95 data). A
major portion (1235/1309) of our MRTD values were
obtained for marketed pharmaceuticals and these data are
non-proprietary. The data set used in this investigation,
excluding proprietary data, will be made publicly available at
the FDA/CDER Website (www.fda.gov/cder/icsas/mrtd.
html), and will include the preferred generic name,
molecular structure (SMILES code), and MRTD values.

MRTD Values

Routes of Exposure

Most of the MRTD values that were included in our
database were determined in pharmaceutical clinical trials
that employed an oral route of exposure and daily treatments,
usually for 3–12 months. The pharmaceuticals were given as
single or divided dose treatment regimens to achieve desired
pharmacological effects. In contrast, roughly 5% of the
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pharmaceuticals in the MRTD database were antineoplastics
and anesthetics and were administered intravenously and/or
intramuscularly. If separate MRTDs were reported for
different routes of exposure, the oral MRTD was used in our
QSAR model. In addition, some pharmaceuticals have
different MRTD values recommended for male and female
adults, children, and/or elderly patients. In this situation we
exclusively used the MRTD values for the average adult
patient.

Dose Units

Pharmaceuticals that are administered orally are usually
tested over a limited range of doses and have MRTDs
reported as mg/day. In this investigation we converted the
mg/day unit to mg/kg-body weight (bw)/day based upon an

average adult weighing 60 kg. In contrast, the dose unit for
most antineoplastic drug MRTDs is reported as mg/m2,
which was converted to mg/kg-bw/day using the formula
mg/kg-bw/day = mg/m2/37 for an average adult.
Additionally, a few drugs had MRTDs reported in parts per
million (ppm), which were converted to mg/kg-bw/day on
the basis that 1000 ppm equals 25 mg/kg-bw/day for an
average 60 kg adult.

Chemical Class

Although our MRTD database initially included values
for many types of chemicals, certain classes could not be
included in the model. These were: inorganic chemicals,
high molecular weight polymers (>5000 Daltons), fibers,
salts, and mixtures of organic chemicals. In addition, small

Fig. (1). Plot of chemical number in the database versus the corresponding log-normalized MRTD value in mg/kg-bw/day. Chemical numbers
refer to the position of a particular chemical within the entire data set of 1309 chemicals listed in order of increasing activity.

Fig. (2). Plot of chemical number in the database versus corresponding rank number for each subset of inactive, marginal and active
chemicals in the A95 module. Chemical numbers refer to the position of each chemical within the entire data set of 1309 chemicals listed in
order of increasing activity.
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molecules (<100 Daltons) were excluded as test chemicals
due to poor predictivity [1].

Construction of MCASE MRTD/NOEL Database
Modules

This investigation employed the MCASE software
program “dose response” utility to construct MRTD/NOEL
database modules, where the MRTD values were treated as
two separate distributions. The first distribution allowed
modeling of “high-toxicity” chemicals, defined as
compounds with low MRTDs, and the second allowed
modeling of “low-toxicity” chemicals with high MRTDs.
This was achieved by creating one distribution that was the
inverse of the other (Figure 1). Structural alerts for high
toxicity chemicals were identified in the first distribution
(A95 module) and, by assigning the highest activity scores to
the lowest toxicity chemicals, low-toxicity structural alerts
were identified in the second (A97 module). The
experimental data input files for each distribution contained
a total of 1309 molecular structures obtained from publicly
available sources [7, 8] and corresponding activity scores in
CASE units derived from MRTD values in our database. A
CASE unit is a standard MCASE program unit for
representing toxicological activity where inactive chemicals
are assigned a score of 10–19.9 CASE units, marginally
active chemicals are scored 20–29.9 CASE units, and active
chemicals are scored 30–80 CASE units.

A95 Module

The A95 module was constructed to identify structural
alerts and other properties of toxic chemicals having low
MRTD values. The 8-log range of experimental MRTD data
values was normalized and converted to a linear scale of 10
to 80 CASE units using Equations 1–3, above, and the
following method: The data set of 1309 chemicals was rank
ordered from highest to lowest MRTD (least to most active;
Figure 1, A95 data) and then divided into three subsets,
representing inactive, marginal and active chemicals. The
term “break-point” was used to describe the point of
partition between each of the three subsets, in mg/kg-
bw/day. The optimal A95 break-points for inactive/marginal
and marginal/active subsets were determined to be 4.99 and
2.69 mg/kg-bw/day, respectively. This was achieved by
systematically adjusting the break-points in both the A95 an

A97 modules to minimize the number of chemicals in the
marginally active subsets and to avoid seeing the same
structural alerts in both modules. The resultant A95 subsets
(Table 1) contained 613 inactives (MRTDs of 1000–5.00
mg/kg-bw/day), 120 marginals (4.99–2.70 mg/kg-bw/day),
and 576 actives (2.69–0.00001 mg/kg-bw/day). The total
number of chemicals in the inactive, marginally active and
active subsets correspond to values x, y and z, respectively,
in Equations 1–3. Each chemical within a subset was
assigned a “rank number” starting with the highest MRTD,
which indicated where a particular chemical appeared in the
subset (values a, b and c, in Equations 1–3, for inactive,
marginal and active subsets, respectively; see also Figure 2).
This number allowed the position of a chemical within the
subset to be expressed as a fraction between 0 and 1 (e.g. a/x
for inactives). When more than one chemical had the same
MRTD value, the same rank number was assigned to those
chemicals. For example, the first and second chemicals in
the inactive subset share the same MRTD value so both were
assigned a rank number of 1 (a = 1); however, the third and
fourth chemicals in the inactive subset each have unique
MRTD values so were assigned rank numbers of 3 and 4,
respectively (a = 3; a = 4). This ensured that when CASE
unit activities were calculated using Equations 1–3,
chemicals with the same MRTD value were assigned the
same CASE unit activity.

The three equations were used to confine each subset of
MRTDs to the specific ranges of CASE unit activities
required by MCASE: 10–19.9 CASE units for inactives,
20–29.9 CASE units for marginally actives, and 30–80
CASE units for actives.

A97 Module

The A97 module was constructed to identify structural
alerts and other properties of low-toxicity chemicals that
have high MRTD values. The module used an inverse-
MRTD value that was calculated as the reciprocal of the
experimental MRTD value for a given chemical. For
example, a MRTD of 0.0100 mg/kg-bw/day for a high-
toxicity chemical was converted to an inverse-MRTD value
of 100 mg/kg-bw/day for the A97 module (Figure 1).
Conversely, a MRTD of 100 mg/kg-bw/day for a low-
toxicity chemical was converted to an inverse-MRTD value
of 0.0100 mg/kg-bw/day. Using the procedure described

Inactive chemical CASE unit activity = 10 + 10(a/x) (Equation 1)

Marginal chemical CASE unit activity = 20 + 10(b/y) (Equation 2)

Active chemical CASE unit activity = 30 + 50(c/z) (Equation 3)

Table 1: Distribution of active, marginal and inactive chemicals in the A95 High-Toxicity and A97 Low-Toxicity MRTD/NOEL
modules.

Chemicals in Training Data Set

Module No. Inactive Marginal Active (%) Total

A95 613 120 576 (44.0) 1309

A97 570 125 614 (46.9) 1309
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above for the A95 module, the data set of 1309 chemicals
was partitioned into three subsets using optimal inverse-
MRTD break-points of 0.210 and 0.400 mg/kg-bw/day for
active/marginal and marginal/inactive partitions,
respectively. The resulting subsets (Table 1) contained 570
inactives (inverse-MRTD values of 100,000–0.400 mg/kg-
bw/day), 125 marginals (0.399–0.210 mg/kg-bw/day) and
614 actives (0.200–0.00100 mg/kg-bw/day). Rank numbers
were assigned as described above and Equations 1–3 were
used to calculate CASE unit activities for the 1309
chemicals. Since the data set is inverted in the A97 module,

chemicals scored as active in this module are listed as
inactive in the A95 module.

Figure 3 illustrates the distribution of calculated CASE
unit activities for each of the modules and selected values are
presented in Table 2 with their corresponding MRTDs.

Evaluation of MRTD Experimental Data

This investigation used the MCASE software program
“dose response” utility and two database modules (A95 and
A97) to predict the relative toxicity of test chemicals and

Fig. (3). Plot of chemical number in the database versus corresponding CASE unit activity values.

Table 2: Selected MRTD and inverse-MRTD values with their corresponding CASE unit activities for the A95 and A97 modules.

A95
MRTD Values

(mg/kg-bw/day)

CASE
Unitsa

A97
Inverse-MRTD Values

(mg/kg-bw/day)

CASE
Unitsa

Inactive 1000. 10.0 Actives 0.00100 79.9

100. 10.7 0.0100 71.9

10.0 16.5 0.100 43.4

5.00 19.0 0.200 30.2

Marginals 4.50 20.3 Marginals 0.222 29.9

2.70 29.8 0.370 20.6

Actives 2.00 33.3 Inactives 0.500 19.1

1.00 42.2 1.00 17.2

0.100 67.8 10.0 12.3

0.0100 76.6 100. 10.7

0.00100 79.0 1000. 10.2

0.000100 79.6 10000. 10.1

0.0000100 79.9 100000. 10.0
aInactive chemicals are assigned 10–19.9 CASE units, marginally active chemicals are assigned 20–29.9 CASE units, and active chemicals are assigned 30–80
CASE units.
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their MRTD values. Test chemicals were submitted as
“.mol” files accompanied by a data input file (“D-file”) in
ASCII format. The experimental output data files from the
two modules were analyzed using a predetermined set of
human expert rules in a three step procedure: (1)
Identification of decision alerts in the A95 and A97 database
modules; (2) analysis of selected portions of MCASE
experimental output data from an individual module; and (3)
a manual combination of the experimental results from the
two MRTD modules.

Identification of Decision Structural Alerts in A95 and
A97 Modules

A large molecular library of 2–10 atom fragments is
generated from chemicals in a training data set and a small
set of fragments that are present primarily in active
chemicals (i.e. structural alerts) are identified by MCASE.
The program determines the statistical significance of the
structural alerts based upon the numbers of active chemicals
that possess the fragments and the results of pairwise t-tests.
After generating structural alerts for the A95 and A97
modules, human expert rules were used to identify a subset
of these alerts that were biologically significant, which we
classified as “decision alerts.” The relative biological
significance (biologic potency) of each structural alert was
calculated by multiplying its average CASE unit activity by
its frequency of appearance in the database module, and was
expressed as the alert’s total CASE unit activity (CASETOT).
For example, a MRTD/NOEL structural alert that appeared
in 3 chemicals having an average of 45.0 CASE units would
have a CASETOT of 135 units (3 × 45 = 135). We defined a
decision alert as having ≥150 CASETOT and a possible
decision alert as having 100–149 CASETOT. Alerts with <100
CASETOT were defined as not significant. In practice these
rules evaluate a structural alert that occurs in only one
chemical and nearly all two-copy alerts as not biologically
significant.

Analyses of Data from a Single MRTD/NOEL Module

MCASE output data from a prediction experiment is
exportable as a comprehensive data file (“R-file”) and a
summary data file (“J-file”). In our investigation we
discarded substantial portions of the MCASE-generated
experimental data, including the conclusion statements from
the R- and J-files for the test chemicals. We also rejected

predictions for all test chemicals with poor structural
coverage, defined as having two or more unknown
fragments; all structural alerts with “highly degenerate” or
“different environment” warnings; and all structural alerts
having <100 CASETOT. Our MRTD/NOEL prediction was
based upon the “TOTAL Projected QSAR Activity x, (x =
response)” for the decision alert, which is given in the R-file
and expressed in CASE units. This activity value is
calculated by the program following analysis of potential
QSAR attributes (e.g. log P, HOMO/LUMO constants, etc.)
and molecular fragment (e.g. activating fragments,
inactivating fragments) modulators of activity of the decision
alert. We then performed a reverse conversion of the CASE
unit activities of individual decision alerts into MRTD values
using the closest CASE unit activity listed in our MRTD
database and its corresponding MRTD value.

Prediction of MRTD Values using Two MRTD/NOEL
Modules

Since our investigation employed a model estimating
chemical toxicity using two different MRTD/NOEL database
modules (A95 and A97), it was necessary to combine the
experimental output data from each of the two modules to
obtain the final MRTD and NOEL predictions. The
following four human expert rules were used to combine the
data:

(1) If one decision alert was identified in a test
chemical using either the A95 or the A97 module, the
MRTD/NOEL estimate was based upon the R-file CASE
unit activity of that decision alert. When the test chemical
had two or more decision alerts for toxicity in one module,
the median CASE unit activity of these alerts was used to
calculate the MRTD. The NOEL dose was defined as 1/10
the MRTD.

(2) If only a possible decision alert was identified in a
test chemical using either the A95 or the A97 module data,
the MRTD/NOEL estimates were based upon the CASE unit
activity of that possible alert.

(3) If no decision alerts were identified in either the
A95 or the A97 module, the test chemical was assigned a
default MRTD value of 4.0 mg/kg-bw/day. This value is the
median MRTD value in the training data set chemical range
(see Discussion).

Table 3: Results of an internal validation experiment using 120 test chemicals.

Predictions
Experimental Groupa

No. (Act.)
MRTD Values I M A VA

Mean |log (exp./pred.) |b

± std.

52 (I) 1000 – 5.00 34 17 1 0 0.34 ± 0.26

11 (M) 4.99 – 2.70 3 6 2 0 0.27 ± 0.11

44 (A) 2.69 – 0.0167 5 8 30 1 0.70 ± 0.69

6 (VA) 0.0166 – 0.00001 0 0 4 2 1.93 ± 1.42

113 (Total)
aOf the 120 chemicals, five chemicals had inadequate coverage and were ineligible for MCASE analysis. A further two chemicals displayed high variance
MRTD predictions and were considered “no calls.” These seven chemicals were excluded from the validation statistics presented above.
bSince the values of log(exp./pred.) for each chemical can be either negative or positive, depending on whether the predicted dose is higher or lower than the
experimental dose, the absolute value is used for calculating the mean and standard deviation of these data.
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(4) On rare occasions when one decision alert was
identified in one module, but a different alert was identified
in the other module, the two resulting MRTD/NOEL
estimates were averaged. However, if the two MRTD/NOEL
estimates exhibited a variance of more than 100-fold, the test
chemical was evaluated as ineligible for a prediction.

Validation Studies

There were two different types of validation experiments
performed in this investigation: an internal cross-validation
experiment and an experiment to estimate the structural
coverage of the MRTD modules for different types of test
chemicals.

Internal Validation Study

An internal validation study was conducted to assess the
accuracy of MRTD predictions using the model. The study
included three separate experiments in which 40 chemicals
were removed from the training data set (for a total of 120
test chemicals), and their MRTD values were predicted using
the remaining portion of the training data set (1269
chemicals for each experiment). The 40 chemicals were
selected from the training data set that was rank-ordered
based upon the magnitude of the MRTD values so that the
test set represented a balanced group of high- and low-
toxicity chemicals. The accuracy of the predictions for the
120 chemicals were estimated using two different methods.
The first method evaluated the ability of the model to place a
test chemical into one of four activity ranges: Very active
(VA) chemicals had MRTD values of 0.0000100 to 0.0166
mg/kg-bw/day (75–80 CASE units); active (A) chemicals
had MRTD values of 0.0167–2.69 mg/kg-bw/day (30–74.9
CASE units); marginally active (M) chemicals had MRTD
values of 2.70–4.99 mg/kg-bw/day (20–29.9 CASE units);
and inactive (I) chemicals had MRTD values of 5.00–1000
mg/kg-bw/day (10–19.9 CASE units). These ranges were
chosen because they correspond to the standard designations
for active, marginally active and inactive chemicals on the
CASE unit activity scale, with the addition of the "very
active” category for the high end of the active range. The
resulting 4 × 4 confusion matrix (Table 3), containing

predicted versus experimental values for the four ranges, was
converted to a 2 × 2 matrix for the purpose of evaluating the
predictive performance of the model for MRTD (Table 4).
Statistical comparisons of MRTD predictions and
experimental results were performed using the method of
Cooper et al. [9].

The second method evaluated the magnitude of the log-
fold difference between the reported MRTD values and the
predicted values. For example, the log-fold difference
between reported (experimental) and predicted MRTDs of
25.0 and 2.50 mg/kg-bw/day respectively, is 1 (log
(25.0/2.5) = 1). Similarly, a 2-fold and 100-fold difference
are equivalent to a 0.301- and a 2-log-fold difference. The
overall log-fold differences in sets of reported and predicted
MRTDs were expressed as the mean and standard deviation
from the mean.

Coverage Study

We evaluated the coverage of the A95 and A97 database
modules for four types of FDA-regulated substances: direct
food additives, food contact substances, and pharmaceuticals
described in either new drug applications (NDAs) or
investigational new drug applications (INDs). The structures
for the direct food additives and food contact substances
used in this experiment were from CFSAN’s Priority-Based
Assessment of Food Additives (PAFA) database [10]; the
structures for the drugs were obtained from our own internal
chemical structure database. Food contact substances are
chemicals that might be present in food from processing,
equipment, packaging, etc.

RESULTS

Experimental Attributes of the MRTD/NOEL Modules

We constructed two different database modules to
estimate the MRTD/NOEL values of test chemicals: The
A95 module for high-toxicity chemicals and the A97 module
for low-toxicity chemicals. The modules used a training data
set of MRTD values for 1309 chemicals with many different
clinical indications and pharmacological properties, which
were partitioned into inactive, marginal and active subsets,

Table 4: Statistical evaluation of test chemical predictions.

Predicted

I+M A+VA Total

Experimental I+M 60 3 63

A+VA 13 37 50

Total 73 40 113

Positive Predictivity

Specificity

False Positives

Sensitivity

False Negatives

=    37/40 = 92.5%

=    60/63 = 95.2%

=    3/63 = 4.8%

=    37/50 = 74.0%

=    13/50 = 26.0 %

Coverage =    115/120 = 95.8%
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as described above (see also Table 1). Identification of the
optimal break-points to define each subset of chemicals was
critical for the generation of well-defined clusters of high-
and low-toxicity structural alerts in each of the modules.
After processing the 1309 chemicals, the modules contained
a fragment library of 903,274 2–10 atom fragments. In the
A95 module, a small subset of 181 fragments (Table 5) were
correlated with low MRTD values in humans and were
subsequently identified as structural alerts. By applying our
human expert rules, 56 were identified as decision alerts and
a further 25 were identified as possible decision alerts. In the
A97 module, 273 fragments that were correlated with high
MRTD values in humans were identified as structural alerts.
78 of these structural alerts were identified as decision alerts
and a further 37 were identified as possible decision alerts.
The decision alerts were the primary basis of MRTD/NOEL
predictions in this investigation.

Decision Alerts in Structurally Similar Chemicals

We examined the types of chemicals in the training data
set that had specific decision alerts in the A95 high toxicity
training data set and the A97 low toxicity data set. We
discovered that these decision alerts were often derived from
clusters of chemicals that were structurally similar, and that
many of the chemicals within a cluster had similar profiles of
toxic effects. Five examples of decision alerts identified
using the A95 module are presented in Table 6; each of
these alerts was derived from a cluster of almost exclusively
active chemicals. Furthermore, the chemicals contained in
each cluster are the only examples in the training data set
which contain the specific alert with an identical number of
hydrogens on each atom. The decision alert
“CH2–CH–NH–CH–” was identified in a cluster of 11 active
chemicals, 8 of which were inhibitors of the angiotensin-
converting enzyme (ACE inhibitors) and are used to treat
hypertension. The alert “N+–CH–” was found in a larger
cluster of 20 active chemicals, 18 of which are either
antimuscarinics or muscle relaxants. Another large cluster of
19 chemicals, 17 of which are active, was identified to
contain the decision alert “CH2-CH-c= <2-OH>”, where the
hydroxyl substituent is bonded to the second atom of the
fragment. 15 of the 19 compounds in this cluster were
categorized as sympathomimetics. The decision alert “n=c-
CH-“ was found in 8 active chemicals, 6 of which were
identified as sedating antihistamines; and finally the decision
alert “n=c–c.=<2–NH2>” was identified in 13 chemicals,
where 5 of the 11 active compounds are antineoplastics and a
further 3 are used to treat hypertension. Figure 4 illustrates

the location of each structural alert in a molecule from its
respective cluster.

Accuracy of MRTD Predictions

An internal cross-validation experiment was performed
in order to estimate the accuracy of MRTD predictions using
our model. The study involved a total of 120 test chemicals
that represented a balanced set of high and low toxicity
chemicals. The accuracy of the predictions was first
estimated by evaluating the ability of the model to correctly
assign a test chemical to one of four possible dose ranges,
and secondly by comparing the predicted MRTD value of a
test chemical to its known reported value. We also examined
the log-fold difference between the known MRTD value and
the predicted value for each test chemical.

The results of this study demonstrated that the model
made good predictions of toxicity for the test chemicals
(Tables 3 and 4). When evaluating the ability of the model
to assign a test chemical to the correct dose range, the
positive predictivity and specificity were high at 92.5% and
95.2%, respectively. Sensitivity of the model was lower but
still acceptable at 74.0%. Finally, the coverage of the 120
test chemicals was high, with 95.8% of chemicals having
fewer than two unknown fragments.

The results also showed that the model was able to
estimate the MRTD value of most types of test chemicals to
within 10-fold the experimental value. For example, the
average log-fold difference between the MRTD values
reported in labeling and the predicted values was only 0.34,
0.27, and 0.70 for test chemicals that were inactive,
marginally active, or active, respectively (Table 3). In
contrast, the average log-fold difference between labeling
and predicted MRTD values for six very toxic test chemicals
was large (1.93 ± 1.42, Table 3).

Coverage of MRTD Database Modules

In the next series of experiments we investigated the
structural coverage of the A95 and A97 database modules for
6882 chemicals, divided into three different types as
regulated by the Agency: pharmaceuticals, direct food
additives, and food contact substances. Test compounds
containing two or more fragments that are not represented in
the training data set are considered uncovered and unsuitable
for analysis. The experiments demonstrated that all of the
modules exhibited excellent coverage for all three types of
substances (Table 7). The highest coverage was obtained for
NDA pharmaceuticals (93.6%) and the lowest coverage was
achieved for food contact substances (89.9%).

Table 5: Distribution of structural alerts in the A95 High-Toxicity and A97 Low-Toxicity MRTD/NOEL modules.

Structural Alertsa

Module No. Non-Signif. Poss. Dec. Al. Decision Alerts Total

A95 High-Toxicity 100 25 56 181

A97 Low-Toxicity 158 37 78 273

258 62 134 454 Total
aStructural alerts are automatically determined from the input molecular library, in this case of 1309 chemicals. Using human expert rules, decision alerts are
defined as having a CASETOT of ≥150 CASE Units; possible decision alerts (Poss. Dec. Al.) have 100–149 CASE Units and non-significant alerts (Non-Signif.)
have <100 CASE Units.
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Table 6: Examples of clusters of chemicals which share decision alerts identified in the A95 High-Toxicity database module.

CH2–CH–NH–CH–

CASE MRTD Chemical

Act. (mg/kg-bw/day) Name Effecta

78 0.00167 (proprietary) sympathomimetic; bronchodilator; beta-adrenergic agonist

68 0.0833 (proprietary) antihypertensive; ACE inhibitor

66 0.133 Perindopril antihypertensive; ACE Inhibitor

56 0.333 Ramipril antihypertensive; ACE inhibitor

51 0.533 Trandolapril antihypertensive; ACE inhibitor

49 0.667 Enalapril antihypertensive; ACE inhibitor

48 0.800 Nylidrin sympathomimetic; vasodilator; tocolytic

46 0.833 Moexipril antihypertensive; ACE inhibitor; angiotensin II receptor agonist

39 1.33 Quinapril antihypertensive; ACE inhibitor

39 1.33 Isoxsuprine vasodilator

39 1.33 Benazepril antihypertensive; ACE inhibitor

N+–CH–

CASE MRTD Chemical

Act. (mg/kg-bw/day) Name Effecta

76 0.0100 Oxitropium bromide antimuscarinic; bronchodilator

70 0.0500 Doxacurium chloride muscle relaxant; neuromuscular blocker

70 0.0500 Atropine N-oxide anticholinergic

67 0.100 Vecuronium bromide muscle relaxant; neuromuscular blocker

67 0.100 Pancuronium bromide muscle relaxant; neuromuscular blocker

62 0.167 Isopropamide antimuscarinic; antispasmodic

61 0.200 Trospium chloride antimuscarinic; antispasmodic

59 0.250 Mivacurium chloride muscle relaxant; neuromuscular blocker

54 0.400 Dimethyltubocurarine muscle relaxant; neuromuscular blocker

51 0.500 Atracurium muscle relaxant; neuromuscular blocker

51 0.500 Butropium bromide antimuscarinic; antispasmodic

50 0.600 Cisatracurium muscle relaxant; neuromuscular blocker

49 0.667 Homatropine antimuscarinic; cycloplegic; mydriatic

49 0.667 Tubocurarine muscle relaxant; neuromuscular blocker

42 1.20 Rocuronium bromide muscle relaxant; neuromuscular blocker

41 1.25 Propantheline bromide antimuscarinic; antispasmodic

39 1.33 Prajmalium antiarrhythmic

39 1.33 Butylscopolammonium antimuscarinic; cycloplegic; mydriatic; antiemetic

bromide

33 2.00 Prifinium bromide antimuscarinic; antispasmodic

30 2.50 Anisotropine antimuscarinic; antispasmodic

methylbromide



70  Current Drug Discovery Technologies, 2004, Vol. 1, No. 1 Matthews et al.

(Table 6) contd.….

CH2–CH–c= <2–OH>

CASE MRTD Chemical

Act. (mg/kg-bw/day) Name Effecta

79 0.00100 Clenbuterol sympathomimetic; bronchodilator; beta-adrenergic agonist

78 0.00140 Salmeterol sympathomimetic; bronchodilator; beta-adrenergic agonist

77 0.00667 (proprietary) sympathomimetic; bronchodilator; beta-adrenergic agonist

74 0.0167 Epinephrine sympathomimetic

74 0.0267 Fenoterol sympathomimetic; bronchodilator; beta-adrenergic agonist
tocolytic

72 0.0370 Bitolterol sympathomimetic; bronchodilator; beta-adrenergic agonist

69 0.0667 Norepinephrine sympathomimetic

62 0.167 Lobeline central stimulant

62 0.167 Isoproterenol sympathomimetic; beta-adrenergic agonist

59 0.250 Terbutaline sympathomimetic; bronchodilator; beta-adrenergic agonist
tocolytic

59 0.250 Midodrine sympathomimetic; alpha-adrenergic agonist

51 0.533 Albuterol sympathomimetic; bronchodilator; beta-adrenergic agonist

46 0.833 Etilefrine sympathomimetic

46 0.833 Phenylephrine sympathomimetic; vasopressor; decongestant; mydriatic

43 1.00 Reproterol sympathomimetic; bronchodilator; beta-adrenergic agonist

33 2.00 Terfenadine non-sedating antihistaminic

30 2.67 Formoterol sympathomimetic; bronchodilator; beta-adrenergic agonist

18 5.33 Sotalol beta-adrenergic blocker; antiarrhythmic

13 40.0 Labetalol beta-adrenergic blocker

n=c–CH–

CASE MRTD Chemical

Act. (mg/kg-bw/day) Name Effecta

77 0.00500 Cerivastatin statin lipid regulator

67 0.100 Dimethindene sedating antihistaminic

66 0.133 Chlorpheniramine sedating antihistaminic

59 0.250 Bisacodyl stimulant laxative

54 0.400 Carbinoxamine sedating antihistaminic

54 0.400 Brompheniramine sedating antihistaminic

50 0.625 Pheniramine sedating antihistaminic

48 0.800 Dexbrompheniramine sedating antihistaminic

n=c–c.= <2–NH2>

CASE MRTD Chemical

Act. (mg/kg-bw/day) Name Effecta

76 0.00833 Aminopterin antineoplastic

70 0.0500 Bunazosin antihypertensive; alpha-adrenergic blocker
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68 0.0900 Cladribine antineoplastic; antimetabolite

61 0.200 Adenosine triphosphate antiarrhythmic

59 0.267 Doxazosin antihypertensive; alpha-adrenergic blocker

56 0.333 Terazosin antihypertensive; alpha-adrenergic blocker

56 0.333 Adenosine-5-phosphate vasodilator

51 0.500 Methotrexate antineoplastic; antimetabolite; folate antagonist;
immunosuppressant; antirheumatic

49 0.676 Fludarabine antineoplastic; antimetabolite

42 1.22 Trimetrexate antineoplastic; antimetabolite

33 2.00 Adenosine antiarrhythmic

23 3.33 Triamterene diuretic (potassium sparing)

15 15.0 Adenine vitamin
a Obtained from reference [5] (d) and [8].

Coverage of MRTD Database Modules

In the next series of experiments we investigated the
structural coverage of the A95 and A97 database modules for
6882 chemicals, divided into three different types as
regulated by the Agency: pharmaceuticals, direct food
additives, and food contact substances. Test compounds
containing two or more fragments that are not represented in
the training data set are considered uncovered and unsuitable
for analysis. The experiments demonstrated that all of the
modules exhibited excellent coverage for all three types of
substances (Table 7). The highest coverage was obtained for
NDA pharmaceuticals (93.6%) and the lowest coverage was
achieved for food contact substances (89.9%).

Comparison of Chemical MTD Responses in Rodents
and MRTD Responses in Humans

The final study in this investigation compared the long-
term toxicities of the same chemicals in rodents and humans.
A set of 326 pharmaceuticals was compiled which had
human MRTD values reported in labeling [5, 6] and rodent
MTDs derived from public sources [11, 12] and reported in
FDA/CDER archives. The MRTD value is determined in
3–12 month clinical trial and the MTD is measured in a two
year (lifetime) study in rodents. This experiment compares
the relative concordance between the human MRTD values
with MTD values in rodents for the same pharmaceutical test
chemicals, and revealed that the dose values were poorly
correlated with one another, having an R2 coefficient of only
0.2005 (Figure 5).

DISCUSSION

Findings

Perhaps the most interesting observation in this
investigation was that the model was able to identify a small
set of decision alerts that were highly correlated with low
MRTD values and the toxicity of the pharmaceutical
chemicals in humans. Using the molecular library of the A95
database module, the program identified 56 decision alerts
and 25 possible decision alerts that were present almost
exclusively in 576 drugs with low MRTD values in humans
(Table 5). Furthermore, we discovered that many of the
decision alerts were composed of clusters of chemicals that

were structurally similar and often shared a similar profile of
pharmacological and toxicological effects (Table 6). Using
the molecular library of the A97 database module, the
program identified 78 decision alerts and 27 possible
decision alerts that were present in 614 drugs with high
MRTD values in humans. These decision alerts were also
composed of clusters of chemicals that were structurally
similar, which when used in combination with the A95
compound clusters provided a rational basis for predictions
of both high- and low-toxicity test compounds. The presence
of numerous well-defined clusters of compounds within our
training data set leads us to believe that our model covers a
wide area of structural space and could be utilized to make
predictions on test compounds within this area. While we
acknowledge that a truly novel molecular structure might be
poorly represented in our training data set, our model is able
to identify this limitation and allow the user to avoid making
a prediction based upon inadequate information.

The high positive predictivity (92.5%) and low false
positive rate (4.8%) of the MRTD/NOEL predictions
(Tables 3 and 4) exceeded all of the toxicological endpoints
we have thus far evaluated in our laboratory. We feel the
sensitivity of 74.0% was also good, and is a reflection of the
relatively large size of the training data set. (However, by
enhancing the training data set with a greater number of
active chemicals, the level of sensitivity for this model
should become even better.) Taken together, these data
suggest that the model has identified a set of decision alerts
that are highly correlated and predictive of the toxicity of
chemicals in humans. The investigation also demonstrated
that the model can provide a reasonably good estimate of a
test chemical’s MRTD. The average log-fold difference
between the MRTD values reported in labeling and the
predicted values was only 0.34, 0.27, and 0.70 for test
chemicals that were inactive, marginally active, or active,
respectively (Table 3). The only subset of test chemicals
with poor MRTD estimates were the six very active test
chemicals with a log-fold difference of 1.93 ± 1.42 (Table
3). Within this very toxic subset, the MRTD values were
significantly overestimated (their toxicity was
underestimated) suggesting that the error may have been
caused by limited representation of some very toxic drugs in
the training database (e.g. cardiotoxins, hormones, etc.).
These data demonstrated that the majority of the test
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chemicals had MRTDs predicted within ±10-fold of their
reported value.

During the course of this investigation we explored two
additional experimental methods to predict MRTD values
but were unsuccessful with either of these approaches. One
method used the MCASE “dose concentration” utility, which
treats the MRTD values as a continuous distribution of
values and creates a single MRTD module. The second
method involved the construction of three MRTD modules
for high-toxicity, intermediate-toxicity, and low-toxicity
MRTD values. Both of these methods had diminished
predictive performance compared to our current model using
two modules. The single module failed because it was unable
to identify molecular and QSAR properties of low-toxicity
chemicals. Furthermore, the dose concentration utility
employed certain logic statements that were not helpful and
difficult to circumvent. The three module method failed
because intermediate toxicity MRTD decision alerts were
poorly defined and overlapped with the decision alerts for
high- and low-toxicity chemicals.

The A95 and A97 MRTD/NOEL modules exhibited good
coverage for several different types of substances that are
regulated by the FDA, such as NDA and IND
pharmaceuticals, direct food additives, and food contact

substances (also known as indirect food additives, Table 7).
Many of the direct food additives are natural substances
derived from plants. The good coverage for pharmaceuticals
and direct food additives suggests our model may be
effective for predicting the toxicity of natural substances.
The good coverage for the food contact substances was
unexpected because these substances are very unlike
pharmaceuticals, being mostly industrial type chemicals used
in the manufacture of food packaging materials and food
processing equipment [13]. We also observed that
enhancement of the training data set improved coverage for
these same substances, which suggests that future
enhancements of the MRTD database with other marketed
drugs and new IND drugs submitted to CDER will make the
predictive performance of the MRTD/NOEL modules even
better.

Limitations of the Model and Other Considerations

Routes of Exposure

Although the overwhelming majority of the control
database MRTD data are based upon the use of an oral route
of administration, a small number of MRTD values were
based upon non-oral routes of administration of the
chemical. We observed that when drugs are reported as

Fig. (4). Selected chemical structures from training data set indicating location of decision alerts.
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having different MRTDs for oral and non-oral routes of
administration the difference in the total daily dose-
concentration of the MRTD is limited to about a 2-fold
difference. This 2-fold difference is minimal compared to the
range of MRTDs within drug clinical indication categories,
and the 8-log range of MRTDs across all categories.

Patient Gender and Age

Different MRTDs are sometimes recommended for male,
female, elderly, adult, child (<12 years), or infant patients.
This investigation collected the MRTD data for these
different types of patients but only the average adult MRTD
values were used to construct the modules. The amount of
uncertainty generated by this decision is thought to be
relatively small. For example, the MRTD for children or
elderly patients is sometimes lower than the adult MRTD,
but the lower MRTD is usually within half of the adult
MRTD. Furthermore, the more common recommendation for
children and elderly patients is that their MRTD can be
gradually increased to the adult MRTD, if needed. Similarly,
certain clinical indications can be treated with
pharmaceutical doses slightly above the MRTD, if needed;

however, these patients are at risk for toxic effects of the
drugs. Patients treated with drugs at dose-concentrations
above the MRTD might include young patients treated with
some antibacterials, adult patients with severe psychoses
treated with antipsychotics, and patients with life-threatening
disease.

Validation Data Set

The validation test in this investigation used a set of 120
test chemicals, where the total training data set were rank
ordered and then a subset were randomly selected. It is
possible that our results may have been slightly different if a
larger test chemical set or a truly random set of test
chemicals had been used.

Optimal Break-point

Optimal break-points are characterized by well-defined
clusters of high- and low-toxicity structural alerts, and the
absence of the same alert in both the A95 module and its
inverse, A97. This investigation used two break-points for
each of the A95 and A97 modules to divide the active,

Fig. (5). Plot of the MRTD values versus the rodent MTD values expressed as logarithms for a set of 326 chemicals.

Table 7: Comparison of coverage for four types of test chemicals in A95 and A97 modules

Chemical Number of

Type Test Chemicals Coverage (%)

NDA Pharmaceuticals 2117 93.6

Direct Food Additives 3039 92.4

IND Pharmaceuticals 92 91.3

Food Contact Substances 1634 89.9
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marginally active and inactive chemicals. It is possible that
this break-point would shift if the database were enhanced
with a large number of new MRTD values. Therefore, any
enhancements to the database would need to be accompanied
by re-evaluation of the break-points and by performing
appropriate validation experiments.

Marginally Active Chemicals

There are technical limitations in identifying molecular
properties and structural alerts for test chemicals with
marginal toxicity, resulting in the absence of structural alerts
for many of these chemicals. In cases where only a rejected
decision alert is present, it can be used as the basis for a
MRTD prediction. However, marginally active test
chemicals frequently have no structural alerts, leaving two
options on how they should be treated: (1) refrain from
predicting test chemicals without structural alerts, or (2)
classify all test chemicals without structural alerts as
marginally active and having a default MRTD. We elected
the latter option and chose 4.0 mg/kg-bw/day, the value in
the middle of the training data set chemical range, as the
default MRTD. In the validation study a total of 24/120
(20.0%) test chemicals did not have any structural alerts. Of
these 24 test chemicals, 5 were marginally active, 6 were
active, and 13 were inactive. The average log-fold difference
between the measured MRTD value and the predicted value
was only 0.504 ± 0.378 (n = 24) leading us to believe that
the human expert rule of using 4.0 mg/kg-bw/day provided
an adequate estimate of the MRTD of test chemicals without
decision alerts.

Estimate of Uncertainty in MRTD/NOEL Predictions

We believe that if the MRTD/NOEL database modules
were used to provide an estimated MRTD, this dose should
be accompanied by an estimate of the error associated with
the predicted value. A comparison of reported versus
predicted MRTD values in our internal cross-validation test
set, summarized in Table 3, revealed that 83.2% (94/113) of
predicted values fall within a range of 0.1–10 times the
reported value (± 1-log-fold). For practical purposes, if a
predicted MRTD was reduced by a factor of 10 this would
provide a conservative estimated dose, which accounts for
the uncertainty in the prediction. A conservative NOEL
estimate would be one tenth of this value.

MRTD Pharmacophores/Toxicophores

Many of the MRTD/NOEL decision alerts were highly
correlated with clusters of drugs with specific
pharmaceutical clinical indications. It is possible that some
of the decision alerts may be associated with
pharmacological activity (pharmacophores) and/or
associated with undesirable adverse toxicological adverse
effects (toxicophores). We believe this issue is very complex
and might involve multiple mechanisms which could be
difficult to resolve using our MRTD/NOEL methodology
alone. We are currently investigating the possibility that the
MRTD database could be modeled with other (Q)SAR
software platforms and believe that the MRTD database
should be included in a battery of human health effect

endpoints, including models utilizing methodologies from
multiple software applications.

Advantages of the Model

Our MRTD/NOEL model for estimating potential human
health effects of chemicals has four major advantages over
the current risk-assessment methods, which rely upon
extrapolations from data derived from animal toxicology
studies.

Reduced Need for Uncertainty Factors

The estimation of NOEL doses of chemicals in humans is
presently most commonly undertaken using a variety of
methodologies that extrapolate relative risk from the results
of animal toxicity studies. These methods usually rely upon a
multitude of uncertainty (safety) factor corrections of the
animal study data to compensate for inadequate information
on, and representation of, the effects of chemicals in humans.
The correction factors include those for: (1) route of
administration (non-oral to oral), (2) duration of exposure
(short-term to chronic), (3) adsorption, distribution,
metabolism and excretion (ADME) differences, and (4)
animal-to-human extrapolation (e.g. body weight surface
area scaling factors) [14-28]. Our MRTD/NOEL model
eliminates the necessity of using uncertainty factor
corrections for animal study data because our model directly
predicts chemical toxicity in humans.

Increased Sensitivity and Specificity

Many of the adverse effects of pharmaceuticals that are
noted in clinical trials do not have a counterpart in animal
studies (e.g. cognitive effects, dysphoria, myalgia, mental
disturbances, headache, nausea, etc.). Estimation of a NOEL
based on human MRTD should be more sensitive and
specific than a NOEL based on animal extrapolation. The
clinical MRTD is in some ways analogous to the maximum
tolerated dose (MTD) used in rodent carcinogenicity studies,
if it is assumed that the MRTD represents a threshold above
which adverse effects of a drug would be observed. Indeed,
very few drugs are observed to have no adverse effects noted
during clinical trials, suggesting that the threshold for
toxicity has been reached in most cases. An experiment was
performed to determine whether a measurement related to a
toxicity threshold in humans (MRTD) is correlated to a
toxicity threshold criterion in rodents (MTD). In this
investigation we showed that the human MRTD and rodent
MTD values for a data set of 326 pharmaceuticals were very
poorly correlated to one another (R2 = 0.2005, Figure 5).

Reduced Cost

There are millions of chemicals with little or no animal
toxicity study data and finite fiscal and laboratory resources
for testing these chemicals. An alternative cost-effective, fast
and reliable screening methodology is warranted and
urgently needed to help prioritize the potential risk of
untested or poorly tested chemicals. Our MRTD/NOEL
model offers a feasible, cost effective, and innovative in
silico solution to this problem. Our model is: (1) automated
(designed to process thousands of test chemicals in batch
mode), (2) inexpensive (costs are limited to software,
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hardware, and trained investigators), and (3) fast
(experimental data for thousands of chemicals can be
generated in minutes).

Applications

We feel that the development of a QSAR model that can
predict the MRTD and NOEL of chemicals in humans based
on human data is an important achievement and may have
broad research and regulatory applications. These predictions
only require a knowledge of the chemical structure and a
training data set of pharmaceutical MRTDs. The MRTD
database is based upon information reported in labeling for
pharmaceuticals and is available at our FDA Website.
Because our MRTD database is relatively large (1309
chemicals) and contains a diverse molecular library (903,274
molecular fragments) we believe our model can be applied to
many organic chemicals that are not pharmaceuticals. The
model also identifies three classes of compounds that cannot
be predicted: (1) chemicals that are not covered, having
molecular structure fragments which are not represented in
the database; (2) chemicals with high variance MRTD
predictions; (3) and very small chemicals (<100 Daltons).

Our human data based MRTD/NOEL model could be an
important research and regulatory tool in academia, industry
and government in situations when chemical toxicity data in
animals and humans is limited or unavailable. The model can
provide the basis for a possible alternative risk assessment
paradigm for the estimation of acceptable exposure in
humans. Likewise, it may provide a useful tool to estimate
the initial doses of pharmaceuticals in human subjects during
Phase I clinical trials. The MRTD/NOEL model could also
be useful in setting the exposure safety margin and to
prioritize the concern with untested contaminants or
degradents that are recognized late in the drug development
process. The model may also be used to evaluate the
exposure safety margin of food contact substances or the
major constituents of dietary and nutritional supplements,
direct food additive flavors and spices, and herbal medicines.
Finally, we believe the decision alerts that were identified in
clusters of chemicals in this study could provide research
insights for common mechanisms of chemical toxicity in
humans, and these alerts could be linked to extensive,
pharmacologic and toxicologic drug studies in both humans
and animals.
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ABBREVIATIONS

ADME = Adsorption, distribution, metabolism and
excretion

AERS = Adverse Event Reporting System

CAS = Chemical Abstract Service

CASE Unit = Standard MCASE program toxicological
activity unit(s)

CASETOT = Total CASE unit activity

CDER = Center for Drug Evaluation and Research

CFSAN = Center for Food Safety and Applied
Nutrition

CRADA = Cooperative Research and Development
Agreement

FDA = U.S. Food and Drug Administration

HOMO = Highest occupied molecular orbital

ICSAS = Informatics and Computational Safety
Analysis Staff

IND = Investigational new drug application

LUMO = Lowest unoccupied molecular orbital

MCASE = Multiple computer automated structure
evaluation program

MRTD = Maximum recommended therapeutic dose

MTD = Maximum tolerated dose

NTP = National Toxicology Program

NDA = New drug application

NOEL = No effect level

ppm = Parts per million

PAFA = FDA/CFSAN Priority-Based Assessment
of Food Additives database

(Q)SAR = (Quantitative) structure activity
relationships

SMILES = Simplified molecular input line entry
system

SRS = FDA/CDER Spontaneous Reporting
System
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